Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Front Immunol ; 12: 700705, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1686468

RESUMEN

A novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), arose late in 2019, with disease pathology ranging from asymptomatic to severe respiratory distress with multi-organ failure requiring mechanical ventilator support. It has been found that SARS-CoV-2 infection drives intracellular complement activation in lung cells that tracks with disease severity. However, the cellular and molecular mechanisms responsible remain unclear. To shed light on the potential mechanisms, we examined publicly available RNA-Sequencing data using CIBERSORTx and conducted a Ingenuity Pathway Analysis to address this knowledge gap. In complement to these findings, we used bioinformatics tools to analyze publicly available RNA sequencing data and found that upregulation of complement may be leading to a downregulation of T-cell activity in lungs of severe COVID-19 patients. Thus, targeting treatments aimed at the modulation of classical complement and T-cell activity may help alleviate the proinflammatory effects of COVID-19, reduce lung pathology, and increase the survival of COVID-19 patients.


Asunto(s)
COVID-19/genética , Activación de Complemento/genética , Proteínas del Sistema Complemento/genética , Perfilación de la Expresión Génica/métodos , Pulmón/metabolismo , Linfocitos T/metabolismo , COVID-19/inmunología , COVID-19/virología , Redes Reguladoras de Genes/genética , Humanos , Espacio Intracelular/genética , Pulmón/inmunología , Pulmón/microbiología , Recuento de Linfocitos , SARS-CoV-2/fisiología , Subgrupos de Linfocitos T/metabolismo
2.
Infect Dis Rep ; 13(1): 102-125, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1403576

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel coronavirus that emerged from Wuhan, China in late 2019 causing coronavirus disease-19 (COVID-19). SARS-CoV-2 infection begins by attaching to angiotensin-converting enzyme 2 receptor (ACE2) via the spike glycoprotein, followed by cleavage by TMPRSS2, revealing the viral fusion domain. Other presumptive receptors for SARS-CoV-2 attachment include CD147, neuropilin-1 (NRP1), and Myeloid C-lectin like receptor (CLR), each of which might play a role in the systemic viral spread. The pathology of SARS-CoV-2 infection ranges from asymptomatic to severe acute respiratory distress syndrome, often displaying a cytokine storm syndrome, which can be life-threatening. Despite progress made, the detailed mechanisms underlying SARS-CoV-2 interaction with the host immune system remain unclear and are an area of very active research. The process's key players include viral non-structural proteins and open reading frame products, which have been implicated in immune antagonism. The dysregulation of the innate immune system results in reduced adaptive immune responses characterized by rapidly diminishing antibody titers. Several treatment options for COVID-19 are emerging, with immunotherapies, peptide therapies, and nucleic acid vaccines showing promise. This review discusses the advances in the immunopathology of SARS-CoV-2, vaccines and therapies under investigation to counter the effects of this virus, as well as viral variants.

3.
Cancers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1256430

RESUMEN

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA